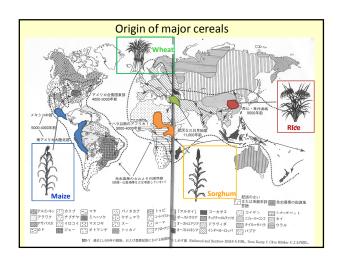
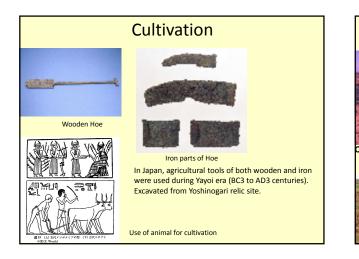
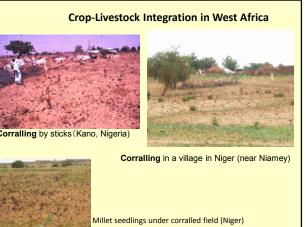


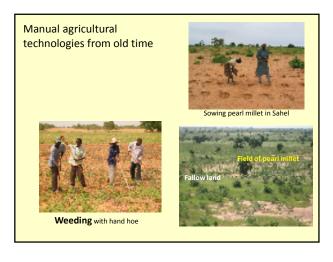
1. Development of agriculture 1-1. Beginning of agriculture

- Agricultural history (Prof. Kurokura)
- Humans first gathered tree fruits etc. and hunt wild animals.
- But then they started cultivation. This is the start of agriculture.
- It took place at various places (domestication center) in the world at different ages, not happened at one place on earth.
- The domestication of crops and animals proceeded.

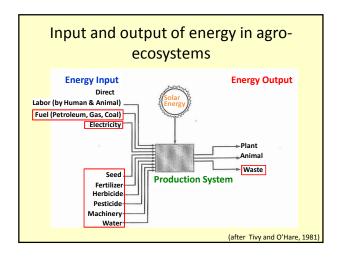




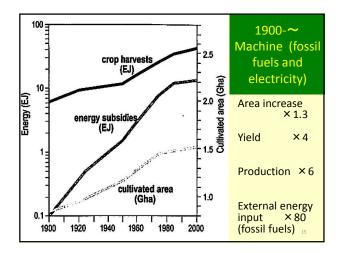

	Population density
Evol	ution of the human being
sma	ll, scattered, vulnerable, and
	environmentally inconsequential (=not
	important) groups of overwhelmingly
	vegetarian <u>foragers</u>
	\downarrow
mos	t numerous population of large,
	substantially carnivorous mammals on the
	Earth

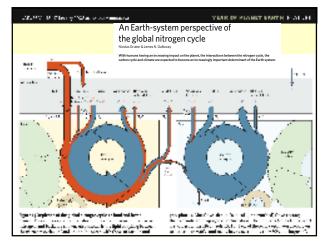

1-2. First age agriculture

- Sowing and harvest
- Slash and burn system
- Cultivation
- Irrigation
- Weeding
- Crop Rotation
- Application of organic matter
- Selection of useful plants
- Crop-livestock integration

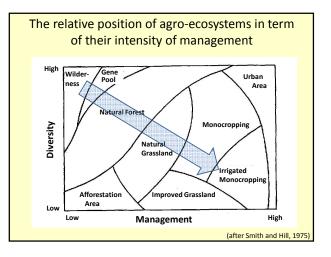


1-3. Second Age (=Industrial) agriculture


- Modern breeding with crossing
- Nitrogen (N) fertilizer
- Phosphorus (P) fertilizer
- Agricultural machinery
- Green revolution


Features

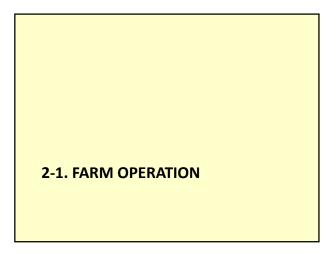
- Increase of input
- Large-scale, mono-cropping type of agriculture


			Borneo	Japan	California
Input	Direct	Labor	0.63	0.80	0.01
		Hoe and harrow	0.02		
		Machinery		0.19	0.36
		Diesel oil			3.26
		Petroleum		0.91	0.66
		Gas			0.35
	Indirect	Nitrogen fertilizer		2.09	4.12
		Phosphorus fertilizer		0.23	0.20
		Seed	0.39	0.81	1.14
		Irrigation		0.91	1.30
		Pesticides		0.35	0.19
		Herbicides		0.70	1.12
		Drying			1.22
		Electricity		0.01	038
		Transportation		0.05	0.12
Output	Rice yiel	d	7.32	17.60	22.37
Energy ef	ficiency		7.08	2.45	1.55

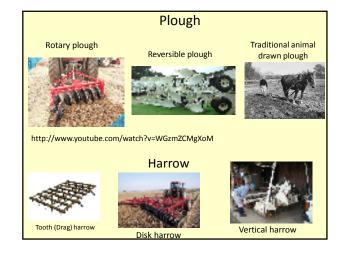
Agro-ecosystem vs. Natural Climax ecosystems

- · Less species diversity
- Less genetic diversity in each species or genotype
- Simpler spatial structure
- Shorter route of solar energy conversion
- Less complexity (2-3 levels) in food-web
- Larger biomass pool in large herbivore (cow, sheep, goat)
- Smaller energy pool in detritus and soil humus
- Faster nutrient cycle (and loss)
- Lower stability
- Open system

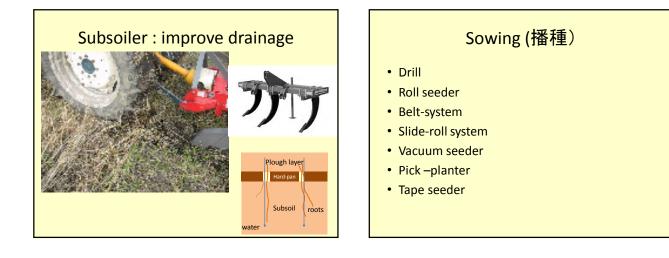
1-4. Third Age Agriculture

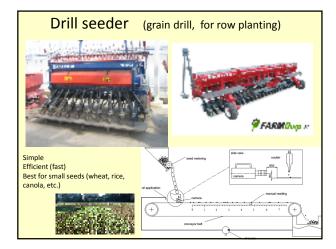

- IPM
- ISFM
- Conservation agriculture
- Precision agriculture
- Organic farming
- Efficient biological function (plants, microbes)
- In situ plant genetic utilization
- Resource exchange

Features:

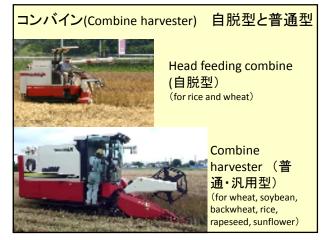

- Adjustment, not the increase of scale and input
- Use of ICT technologies
- Use of biological functions
- Human oriented

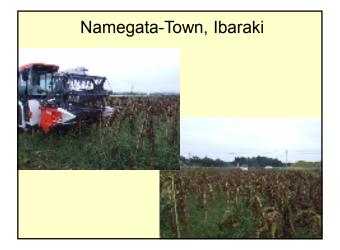
2. Components of agricultural technologies

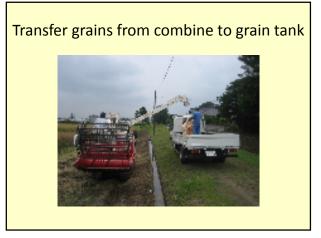

- 2-1. Farm operation (agricultural machinery)
- 2-2. Cropping system
- 2-3. Seed system
- 2-4. Fertilizers

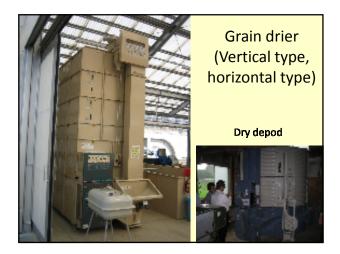


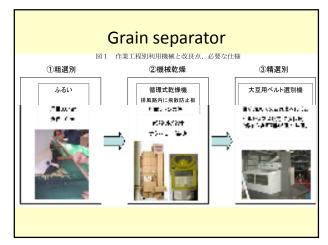


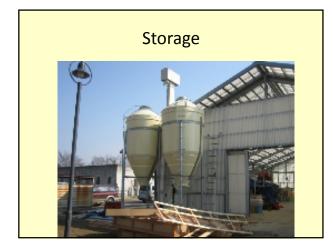


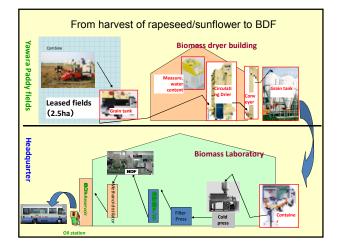


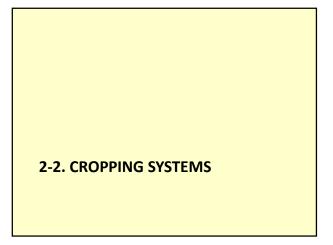


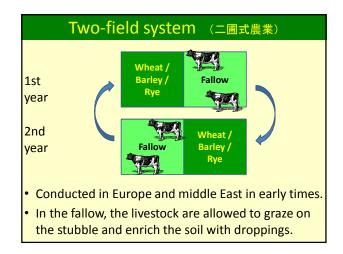


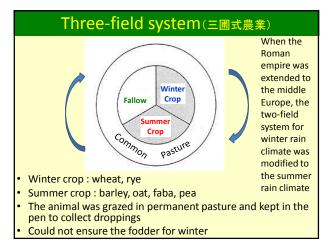


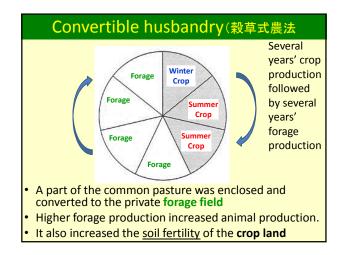


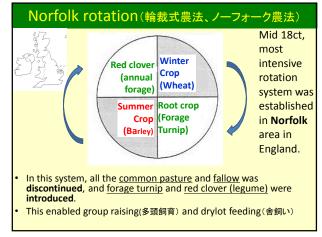


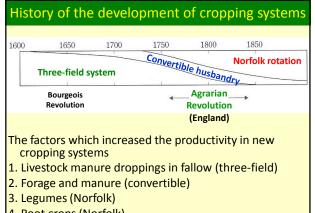


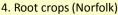


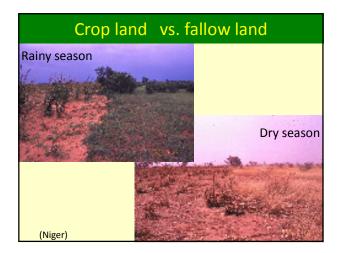


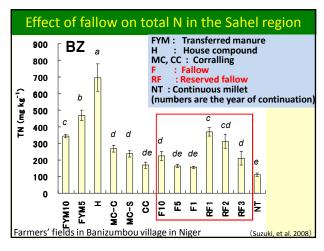


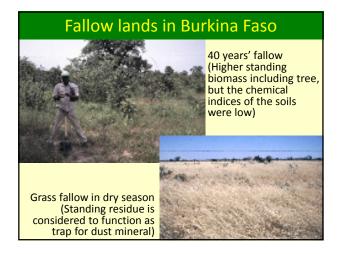


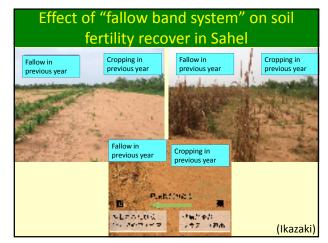


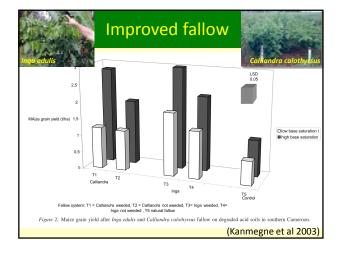










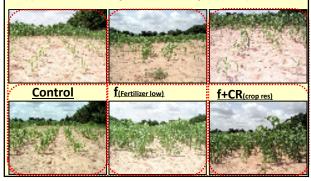


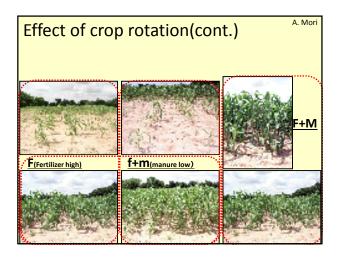
CROP ROTATION

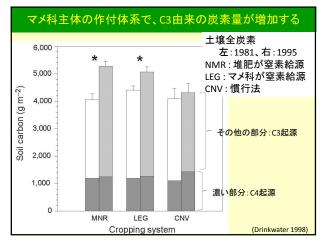
- •Legume rotation
- •Effect of legume rotation other than N
- Legume rotation and soil carbon
- •(Effect of mycorrhizae \rightarrow later)

Legume mixed cropping in the world

- Maize with Bean (Central and South America)
- Rice with Soybean (Asia)
- Rice with Mungbean (Asia)
- Sorghum with Pigeonpea (India)
- Pearl millet with cowpea (Africa)


Low consumption of legumes compared with cereals
 → Low planting density of legumes compared with cereals


Effect of crop rotation(1)

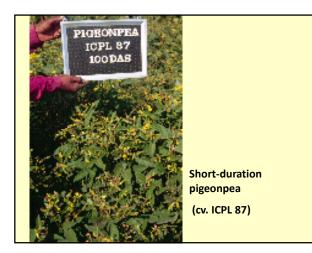

Long-term exp at Burkina Faso (2006) 46 days after sowing

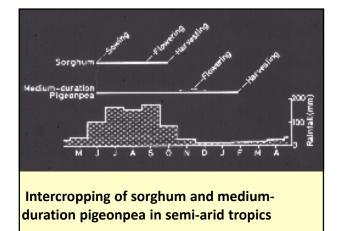
Upper-Continuous sorghum, Lower-Sorghum-Cowpea rotation

A. Mori

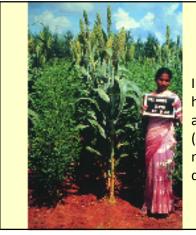
INTERCROPPING, MIXED CROPPING

Various inter/mixed croppingYield advantages of intercropping

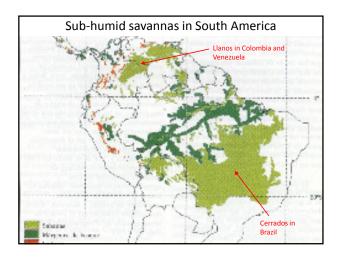

- Risk diversification
- Complementary resource utilization
- •Reducing diseases, nematodes, insect pests

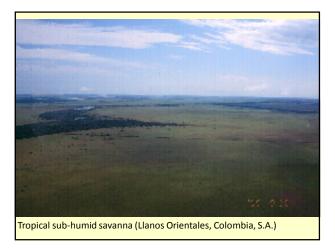


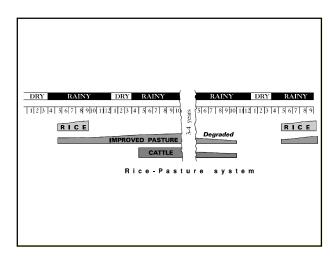
Hybrid sorghum improved at ICRISAT

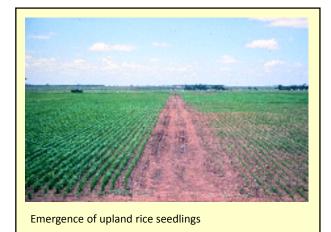


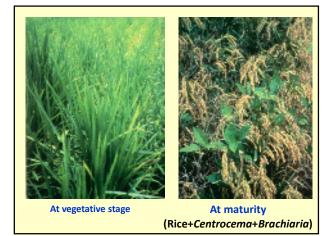
Intercropping of sorghum and pigeonpea in a farmer's field




After sorghum harvest (pigeonpea are remaining)

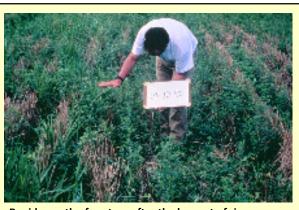

Intercropping of hybrid sorghum and pigeonpea (improved mediumduration variety).



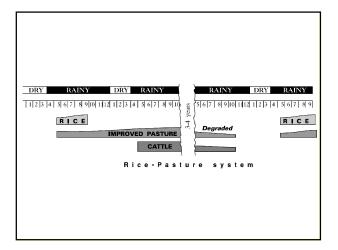

Combination of rice and pasture species for Rice-Pasture system in Llanos, Colombia									
	Rice cv.	+	Grass	+	Legume				
Combination 1	Orizica Sabana 6		Brachiaria dictioneura		Centrocema acutifolium				
(Density)	(60 kg/ha)		(3 kg/ha)		(4 kg/ha)				
Combination 2	Oryzica Sabana 6		Andropogon gayanus		Stylosanthes capitata				
(Density)	(60 kg/ha)		(10 kg/ha)		(3 kg/ha)				
Upland rice v	vas drill-sow	n v	vith the 34 cm	di	stance of				

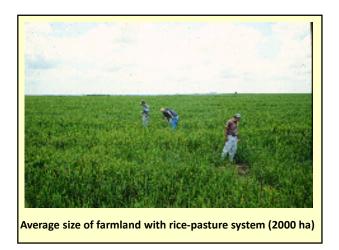
Upland rice was drill-sown with the 34 cm distance of rows, pasture seeds were broadcasted.

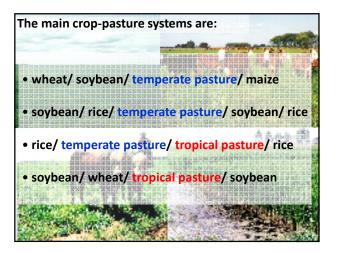
Preparation of field and applying fertilizers

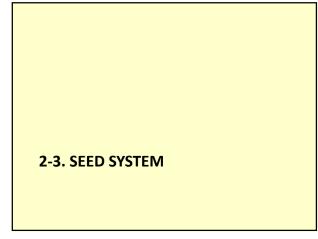

Rice-pasture system at maturity of rice (Rice + Brachiaria + Centrosema)

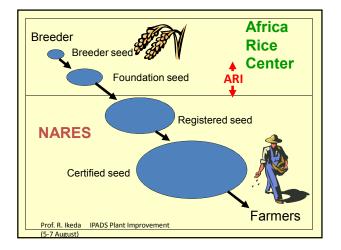
Harvest of rice by large combine (Rice + Andropogon)

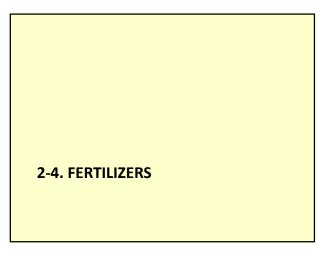


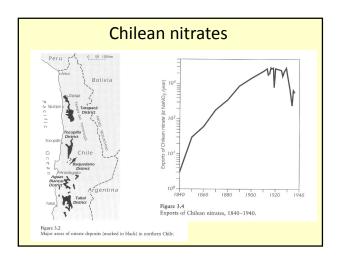

Just after the harvest of rice

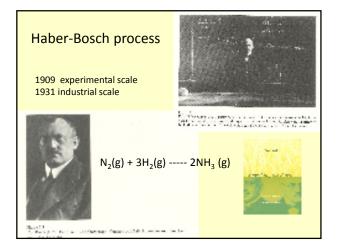

Rapid growth of pasture after the harvest of rice











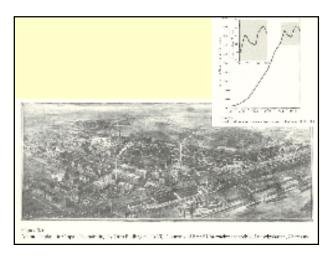
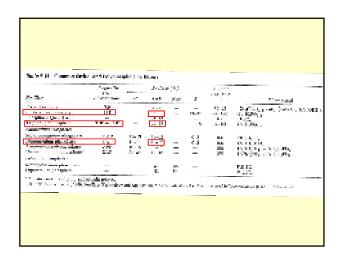
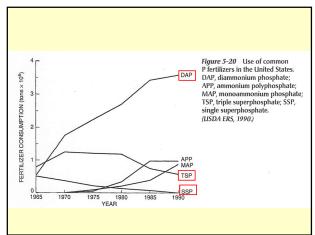


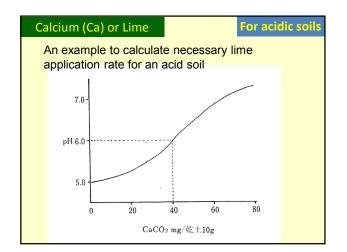
Table 4-21 Composition of Some Common Soluble Fertilizer N Sources								
	Nutrient Content (%)							Physical
N Source	N	P_2O_5	K_2O	CaO	MgO	S	Cl	State
NH4 ⁺ or NH4 ⁺ forming								
Anhydrous ammonia	82	_		—			_	Gas
Aqua ammonia	20-25		_	—		_		Liquid
Ammonium chloride	25-26	-	_			-	66	Solid
Ammonium nitrate	33-34			-	_		_	Solid
Ammonium sulfate	21	-				24		Solid
Monoammonium phosphate	11	48-55	-	2	0.5	1-3	-	Solid
Diammonium phosphate	18 - 21	46-54		_	-		—	Solid
Ammonium phosphate-sulfate	13 - 16	20 - 39		-		3 - 14	-	Solid
Ammonium polyphosphate	10-11	34-37		-				Liquid
Ammonium thiosulfate	12	_	_		-	26	-	Liquid
Urea	45 - 46				-	-		Solid
Urea-sulfate	30 - 40	_		-	_	6-11		Solid
Urea-ammonium nitrate	28 - 32				—		_	Liquid
Urea-ammonium phosphate	21 - 38	13 - 42	-	—	—			Solid
Urea phosphate	17	43-44		—	—	_	_	Solid
NO3 ⁻								
Calcium nitrate	15			34	-		_	Solid
Potassium nitrate niter	13		44	0.5	0.5	0.2	1.2	Solid
Sodium nitratenitratineチリ	16	-	_		—		0.6	Solid

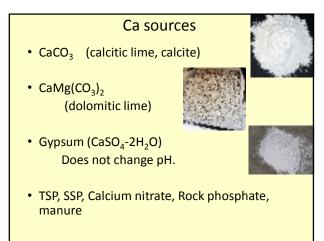






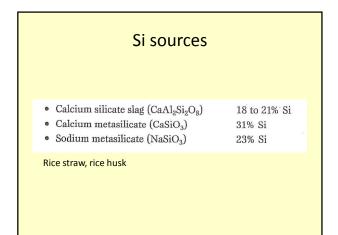
- Warm climate, moist soils, long growing seasons
- High initial dose (10-30 t/ha) and 5-10 years repetition

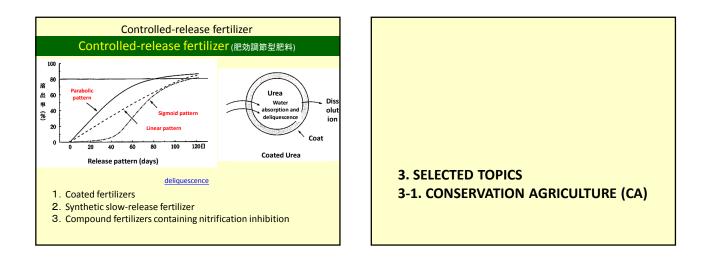


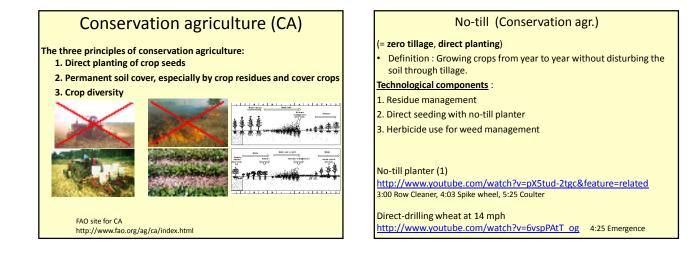


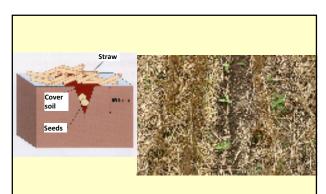
Potassium (K)			-088B	in the second	
Drganic = animal manu norganic = fertilizers	re and s	sludge	Potash		
Table 6-6 Plant Nutrient Con	ntent of C			S	N.
	10	P_2O_5	K ₂ O	-	Mg
Material			%		
Potassium chloride	1	-	60-62	_	_
Potassium sulfate	-	_	50-52	17	-
		_	22	22	11
Potassium magnesium sulfate			22		
Potassium magnesium sultate Potassium nitrate	13		44		_
	13	_		_	_
Potassium nitrate	13	_	44		_
Potassium nitrate Potassium hydroxide	13 	 	44 83		-
Potassium nitrate Potassium hydroxide Potassium carbonate	13 — —	 30-60 40-60	44 83 ,68		
Potassium nitrate Potassium hydroxide Potassium carbonate Potassium orthophosphates	13 — — —		44 83 ,68 30–50	 17	

Table 7-4 S-Containi	Table 7-4 S-Containing Fertilizer Materials			Sul	fur	
		1	Plant Nu	trient C	ontent (%)
Material	Formula	Ν	P_2O_5	K_2O	S	Other
Ammonium polysulfide	NH ₄ S,	20		-	45	,
Ammonium sulfate	$(NH_4)_2SO_4$	21		2	24	
Ammonium thiosulfate	$(NH_4)_2S_2O_3$	12		1	26	
Calcium polysulfide	CaS	-	-	-	22	6 (Ca)
Calcium thiosulfate	CaS ₂ O ₃	-	-	-	10	6 (Ca)
Ferrous sulfate	FeSO4 · H2O		12		19	33 (Fe)
Gypsum	CaSO ₄ ·2H ₂ O	~			19	24 (Ca)
Magnesium sulfate	MgSO ₄ ·7H ₂ O	-	-	-	13	10 (Mg)
Potassium-magnesium sulfate	$K_2SO_4 \cdot MgSO_4$	-	-	22	22	11 (Mg)
Potassium polysulfide	KS	-	-	22	23	
Potassium sulfate	K ₂ SO ₄	-	-	50	18	
Potassium thiosulfate	K2S2O3		-	25	17	
Sulfur	S ⁰	8	H	-	100	
Sulfur (granular w/additives)	S ⁰	0-7	8	÷	68-95	
Sulfuric acid (100%)	H_2SO_4		-	-	33	
Superphosphate, single	$Ca(H_2PO_4)_2 \cdot CaSO_4 \cdot 2H_2O$	-	20	-	14	
Superphosphate, triple	$Ca(H_2PO_4)_2 \cdot CaSO_4 \cdot 2H_2O$	-	46	~	1.5	
Urea-sulfur	$CO(NH_2)_2 + S$	38	-	-	10 - 20	
Urea-sulfuric acid	$CO(NH_2)^2 + H_2SO_4$	10 - 28		~	9 - 18	
Zinc sulfate	ZnSO ₄ ·H ₂ O	-		-	18	36 (Zn)

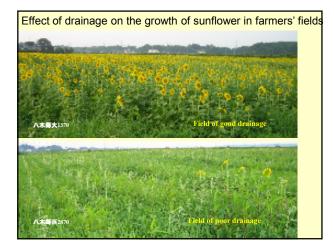


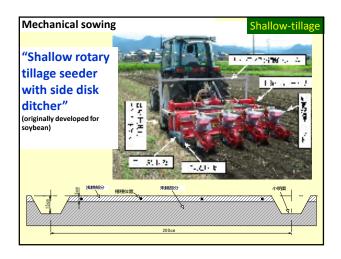

Equivalence (CCE)							
Table 1. Relative (CCE) values for different liming materials.							
Material	Composition	CCE					
Calcitic limestone	CaCO,	98-100					
Dolomitic limestone	CaMg(CO ₃)	100-109					
Calcium oxide	CaO	179					
Magnesium oxide	MgO	250					
Hydroxides	Ca(OH) ₂ or						
	Mg(OH) ₂	120-136					
Marl	CaCO ₃ •X*	60-90					
Slags	CaSiO ₃ •X*	50-90					
Sludges	CaCO ₃ •X*	30-80					
Wood ashes	X	30-50					


Particle size and the effectiveness of liming materials								
Table 2. The influence of lime particle size on soil pH change 1 year after applicatio Two tons of lime were applied to all treatments except the control.								
Soil pH Relative effectiveness								
Lime particle size (mesh)	Calcitic limestone	Dolomitic limestone	Calcitic limestone	Dolmitic limestone				
No lime (check) 4-8	5.0 5.0	5.0 5.0	0 5	0				
20-30	5.6	5.5	54	39				
40-50	5.9	5.8	74	65				
60-80 100	6.3 6.5	6.2 6.6	96 100	84 100				
	cle size (smaller th							



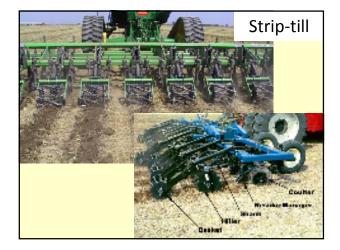
Seed position by no-till planter and germination

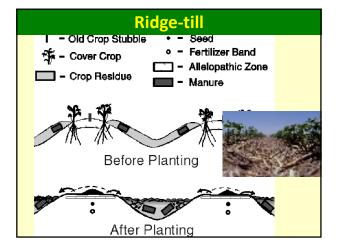

Advantages of no-till seeding


- No need for ploughing
- High efficiency (4 to 5 m/second)
 Best-timing operation (shortly after rain)
- One-time operation (sowing, fertilization and herbicide application)

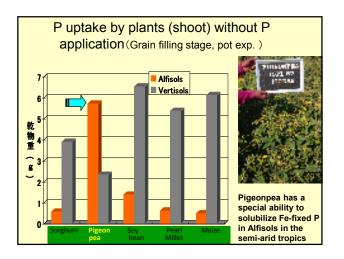
Disadvantages

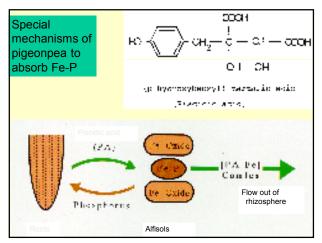
- Highly risk of excess moisture
- Less weed suppression

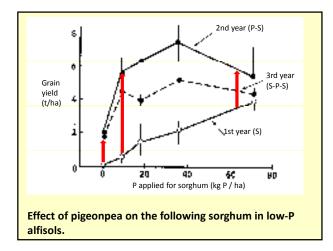


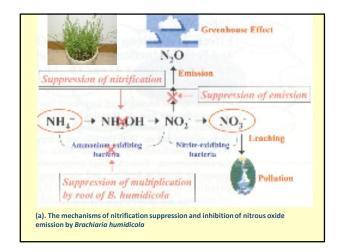


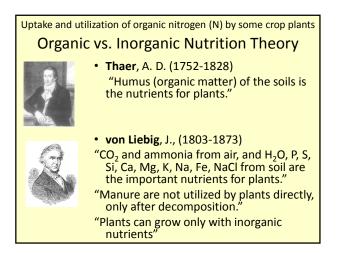
Strip-till

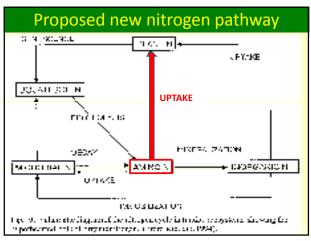

First, a parial width of the row (20-25cm) is cultivated with special equipment. Fertilizers and chemicals are usually applied at the same time. In the second run, the seeds were sown on the strip.

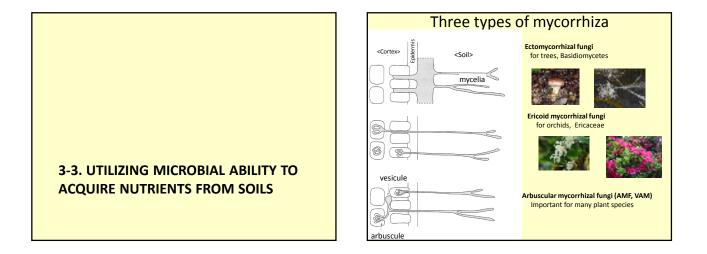

Benefit: The higher soil temperature compared with non-till , less erosion, etc. http://www.youtube.com/watch?v=J1OZWZ2yAaY

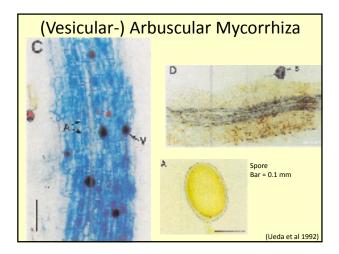


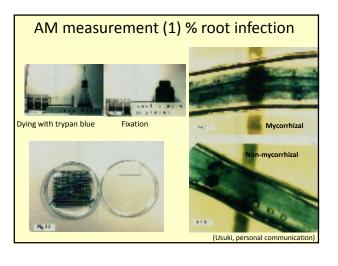


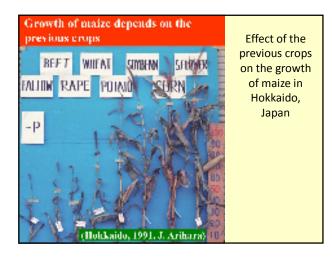

3-2. UTILIZING PLANT'S ABILITY TO ACQUIRE NUTRIENTS FROM SOILS

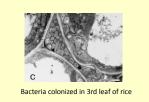


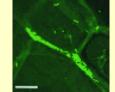




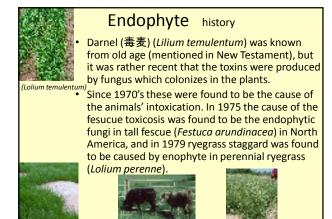




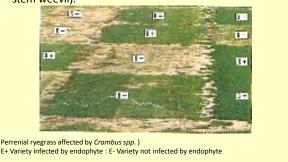




Endophyte


- endo (within)+ phyte (plant)
- Definition : An endophyte is an symbiotic microbes in plant tissue, often a bacterium or fungus, that lives within a plant for at least part of its life <u>without causing apparent disease</u>. Endophytes are ubiquitous and have been found in all the species of plants studied to date.

(Elbeltagy et al 2001)



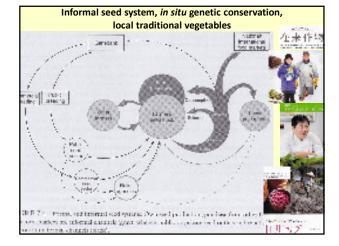
Fluorescence micrographs of GFPtagges *Herbaspirillum* sp. strain

 But Prestidge (1982) reported that endophytic perennial ryegrass is more tolerant to a kind of weevil (Argentine stem weevil).

Power of endophyte (NHK video) http://cgi4.nhk.or.jp/gendai/kiroku/detail.cgi?content_id=2958

			n Sugarca				
balance and ¹⁵ N is Variety/	sotope dilution tech Final N	niques (g N m ⁻¹). m N	eans of 4 replicates. A Estimates of B	After Urquiaga et	al. (1991)	F using N	
Species	content of soil	accum. whole	All three years		Annual mean		
		plant 3 years	N balance ¹	¹⁵ N ²	N balance	15N	
CB 47-89	835	61.4bc	39.7	34.8c	13.2	11.6	
CB 45-3	864	84.3ab	62.6	52.6b	20.9	17.5	
NA 56-79	884	57.8c	36.1	32.6c	12.0	10.9	
IAC 52-150	924	59.6bc	37.9	33.8c	12.6	11.3	
SP 70-1143	852	77.5bc	55.8	51.9b	18.6	17.3	
	860	56.9c	35.2	33.3c	11.7	11.1	
SP 71-799	845	63.6c	41.9	35.4c	14.0	11.8	
	845	05.00					
SP 79-2312	845 826	33.0d	11.3	16.9d	3.8	5.6	
SP 71-799 SP 79-2312 Chunce Caiana							
SP 79-2312 Chunee Caiana Krakatau	826	33.0d	11.3	16.9d	3.8	5.6	
SP 79-2312 Chunee Caiana	826 857	33.0d 11.6d	11.3 - 10.1	16.9d 6.7d	3.8 - 3.4	5.6 2.2	

Plants associated with N₂-fixing endophytes


sugarcane

- rice
- palm (date, oil, etc.)
- sweet potato
- pineapple
- .
- tea
- coffee
- and more?

crisis in the Middle-East Recent attempts to isolate diazotrophic bacteria from palm trees at various sites, including the Amazon region, showed the abundant occurrence of diazotrophic bacteria. <u>Dendê and Pupunha are</u> colonized by *Azospirillum brasilense*, *A. amazonense*, *Herbaspirillum seropedicae*, and other as-yet-unidentified N₂-fixing bacteria. These bacteria are present in the roots, stems, leaves, and in the endosperm of the fruit. Probably a new *Herbaspirillum* species is present in roots, stems, and leaves of these palm trees (Ferreira et al., 1995 and 1997).

(Reis et al 2000)

6. Future Direction

Present issues for agriculture and food for consumers

- Safety of the food
 - Additives, Remaining antibiotics, BSE, Virus, Radioactivity
- High price
- Unbalanced nutrients

Convenient food

Present issues for agriculture and food for producers

- Low benefit, fluctuation
- Unbalanced labor / price
- Working conditions
 - Two extremes Quest of the high value-added products, which will not lead to the benefit of the consumers

Necessary endeavors for the further quest of the 3rd generation agricultural technologies

Critical thinking Quantitative assessment for the impact Transforming new findings to real technologies.

レポート課題/Report

- 特殊な肥料または機械を必要とする作物(なる べく作物、しかし難しければ野菜・果物でも可)を 調べて見つけ出し、その作物の特殊性と肥料・ 機械について述べよ。(400~600字)
- Find a crop (or vegetable/fruit) to which special fertilizer or machinery is needed, and discuss the special characteristics of the crop and why the special technology is necessary (200-300 words)