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Supply of and demand for CO, in
intercellular spaces
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Supply: CO, diffuses in while water
vapor diffuses out via stomatal pores
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Demand for CO,: Photosynthetic
processes in chloroplasts (Fig. 3)
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Supply = demand at the intersection

Why the demand increases at the
‘Energy limited’ region?
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Fig. 9. Extra pathway for higher
efficiency of carbon fixation by Rubisco
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Supply = demand at the intersection
What happens if light intensity is

changed?
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Supply = demand at the intersection
What happens if CO, concentration is

increased?
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Supply = demand at the intersection
What happens if leaf N content is

increased?
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The demand-supply concept can thus
explain the leaf gas exchange behavior
under changing environment
reasonably well.

e Leaf stomata behaves to attain a good balance
between carbon gain and water loss.

 The stomatal behavior is based on genetic
program which varies by species and varieties,
and has been developed during the processes
of evolution and breeding.



Scaling-up leaf photosynthesis to plant
canopy photosynthesis



Fig. 20. Monsi-

Saeki Model of

canopy photo-
synthesis.

Integral leaf area

BO

= 6'
©

7
/
/
Fi
/
— /

ttom.

Irradiance

Source: Ref. 4.

' Leaf photosynthesis

"

Irradiance




Fig. 21. Monsi-Saeki Model as
compared with observed canopy and

leaf photosynthesis rates.
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Fig. 22.
Hirose-
Werger
Model for
photo-
synthesis
with N
gradient for
optimum
light use.
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Fig. 23. Effect of leaf N gradient on

canopy photosynthesis
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Plants can alter resource allocation for
more efficient use of the resources, e.g.
Nitrogen, light.



Distributing assimilates (C, N...)



Panicle initiation
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Fig. 26. Relationship between nitrogen
accumulation and number of fertile grains.
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Fig. 27. Relationship between nitrogen
accumulated by plants and grain yield in
maize and rice

I || 1 ] 1 1 ]
16000 ~ ¢ Rice (avg. 1.0% N in DM, 1.2% N in grain) -
O Maize (avg. 1.2% N in DM, 1.4% N in grain) .
14000 - s o -
.‘.
's 12000 & & g
2 10000 - )
3
s 8000 - y = -3710 + 995 x** -
£ R*=0.76
g 6000 - J
Rice
4000 = y =-1573 + 643 x°* 1
=
2000 - o R*=0.55 1
0 | ! | 1 ! ] 1
0 50 100 150 200 250 300 350

Plant-N accumulation (kg ha™)

Source: Cassman K.G. et al. (2002). Ambio 31, 132-140.



Fig. 28.
Response of
IR8 and its
parents to
increased N

application.
Source: Ref. 2
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3. Breeding and intensification: how modern
varieties increased crop production?

alx\! ;

1
;‘r & A VIETHAMESE family of five on & motochike

m1 g just
- explained why he dide’t in 1974, Vietnamese farmers quickly dubbed
1] ye [RS8 “Lwa Honda™ (Hondy Rioe} becsuie one
igeoad crep boughtt & new medtorhike.

by Tom Hargrove

How the first Green Revolution rice variety—IR8—influenced
life and death in the Mekong Delta during the Vietnam War







Question

e Read the story of IR8 or Honda-Rice in Ref. 2
and summarize what was most impressive for
you.



Land use of Mekong Delta in early 1970’s
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Rice cropping system in Mekong Delta
in 2003
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Rice production in Vietnam

Rice production (Million t, paddy) in Vietnam
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Fig. 31. Wheat harvest in a 16th Century

drawing by Abel Grimmer after Pieter
Brugel in 1570.




Fig. 32. Wheat cultivars that

contributed to the Green Revolution.
From left to right: 'Shiro-Daruma’, 'Turkish Red’,

Source: Ref. 2.



Fig. 33. The rice cultivar IR8 and its
parental varieties.

Source: Ref. 3.



Fig. 34. Relationship between stem
height and harvest index in wheat,
barley, maize, oat, and rice.
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Fig. 35. Yield
response of IR8
and its parents
to increased N

application.
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3. Breeding: how modern varieties got
the higher yield than traditional ones?

e Shorter stature: reduced plant height (Figs. 31-33)
with erect leaves, increased Harvest Index (Fig. 34),
and higher yield under greater N application (Fig. 35),
which raised leaf photosynthetic rate in either wild,
traditional or modern species (subspecies) of rice (Fig.
36).



Fig. 37. Increase of harvest index in
wheat, barley and rice.
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3. Breeding: how modern varieties got
the higher yield than traditional ones?

e Shorter stature: reduced plant height (Figs. 31-33) with
erect leaves, increased Harvest Index (Fig. 34), and higher
vield under greater N application (Fig. 35), which raised
leaf photosynthetic rate in either wild, traditional or
modern species (subspecies) of rice (Fig. 36).

e Shorter growth duration with diminished
photoperiod sensitivity:
e Photoperiodism and heat-sum: biological calendars (Fig. 38).

e Growth duration: higher HI (Fig. 39) and introduction of dry
season crop (Fig. 40) with higher yield due to higher solar
irradiance (Fig. 41).



Fig. 38.
Daylength at
various
latitudes.

Source: Ref. 4

Daylength (h)

(a)

LIS (VU [RPS SNS

JFMAMJ JASOND

Month




Fig. 39. Relationships between harvest
index and growth duration.
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Fig. 40. Rice cropping system in a
southern province of Cambodia
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Grain yield (t ha™)

Fig. 41. Effect of solar irradiance on
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3. Breeding: how modern varieties got
the higher yield than traditional ones?

e Shorter stature: reduced plant height (Figs. 31-33) with
erect leaves, increased Harvest Index (Fig. 34), and higher
vield under greater N application (Fig. 35), which raised
leaf photosynthetic rate in either wild, traditional or
modern species (subspecies) of rice (Fig. 36).

e Why has the higher yield of modern varieties
made sense?

 Market-oriented crop production (read the story of IR8 or
Honda-rice in Ref. 3).

 Modern control of water, nutrients, and competing species.



